泰勒公式是一個用函數(shù)在某點的信息描述其附近取值的公式。如果函數(shù)足夠光滑的話,在已知函數(shù)在某一點的各階導(dǎo)數(shù)值的情況之下,泰勒公式可以用這些導(dǎo)數(shù)值做系數(shù)構(gòu)建一個多項式來近似函數(shù)在這一點的鄰域中的值。泰勒公式還給出了這個多項式和實際的函數(shù)值之間的偏差。1.簡介 2.主要著作展開公式定義 泰勒公式(Taylor's formula) 泰勒中值定理:若函數(shù)f(x)在含有x的開區(qū)間(a,b)有直到n+1階的導(dǎo)數(shù),則當(dāng)函數(shù)在此區(qū)間內(nèi)時,可以展開為一個關(guān)于(x-x.)多項式和一個余項的和: f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+Rn(x) 其中Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x.)^(n+1),這里ξ在x和x.之間,該余項稱為拉格朗日型的余項。 ?。ㄗⅲ篺(n)(x.)是f(x.)的n階導(dǎo)數(shù),不是f(n)與x。的相乘。)
證明 我們知道f(x)=f(x.)+f'(x.)(x-x.)+α(根據(jù)拉格朗日中值定理導(dǎo)出的有限增量定理有l(wèi)imΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中誤差α是在limΔx→0 即limx→x.的前提下才趨向于0,所以在近似計算中往往不夠精確;于是我們需要一個能夠足夠精確的且能估計出誤差的多項式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 來近似地表示函數(shù)f(x)且要寫出其誤差f(x)-P(x)的具體表達(dá)式。設(shè)函數(shù)P(x)滿足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。顯然,P(x.)=A0,所以A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n)(x.)=n!An,An=f(n)(x.)/n!。至此,多項的各項系數(shù)都已求出,得:P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下來就要求誤差的具體表達(dá)式了。設(shè)Rn(x)=f(x)-P(x),于是有Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n)(x.)=0。根據(jù)柯西中值定理可得Rn(x)/(x-x.)^(n+1)=(Rn(x)-Rn(x.))/((x-x.)^(n+1)-0)=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),這里ξ1在x和x.之間;繼續(xù)使用柯西中值定理得(Rn'(ξ1)-Rn'(x.))/((n+1)(ξ1-x.)^n-0)=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)這里ξ2在ξ1與x.之間;連續(xù)使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,這里ξ在x.和x之間。但Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一個常數(shù),故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。綜上可得,余項Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般來說展開函數(shù)時都是為了計算的需要,故x往往要取一個定值,此時也可把Rn(x)寫為Rn。 麥克勞林展開式 ?。喝艉瘮?shù)f(x)在開區(qū)間(a,b)有直到n+1階的導(dǎo)數(shù),則當(dāng)函數(shù)在此區(qū)間內(nèi)時,可以展開為一個關(guān)于x多項式和一個余項的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),這里0<θ<1。 證明:如果我們要用一個多項式P(x)=A0+A1x+A2x^2+……+Anx^n來近似表示函數(shù)f(x)且要獲得其誤差的具體表達(dá)式,就可以把泰勒公式改寫為比較簡單的形式即當(dāng)x.=0時的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)(ξ)/(n+1)!?x^(n+1) 由于ξ在0到x之間,故可寫作θx,0<θ<1。